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ABSTRACT 

In a vicinity of a stationary solution we consider a real analytic system of ODE of order 

four, depending on a small parameter. We look for families of periodic solutions which 

contract to the stationary solution, when the parameter tends to zero. We apply the general 

method of power geometry for the study of complex bifurcations  for local resolutions of 

singularities.  

 

Keywords: Stationery solution, periodic solution, singularity, method of power geometry, 

complicated bifurcations, Newton polyhedral, truncated system, normal form,   local 

resolutions, power transformations. 

 

 

1. INTRODUCTION 

 First of all, we bring the system to a normal form in a vicinity of a 

fixed point, then we compute the set A containing all the families of periodic 

solutions that contract to this fixed point. These families can be written as 

asymptotic power series in a small parameter. To obtain the first few terms of 

these series from the normal form, we single out the first approximation of 

the system (truncated system) and study it in detail. In the nondegenerate case 

it is the truncated system that determines character of the bifurcations and 

their asymptotic. The higher terms in the normal form allow one to make the 

asymptotic expansion of the family more precise. Thus, the computation of 

these families of periodic solutions is performed over the coefficients of the 

terms of ire normal form. For concrete systems, the computation of the 

coefficients of terms in the normal form can be made only up to terms of 
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some finite degree. In this case it is important to compute all coefficients of 

the terms of the lowest degree (that appear in the truncated system). 

 

2. DESCRIPTION OF THE METHOD 

We consider a real analytic system whose expression in complex 

conjugate coordinates is  

     ⁄   ( )     (         ̅   ̅ )  

                                   ⁄   ( )     (         ̅   ̅ )                      
(1) 

 

and the corresponding complex conjugate equations. We assume that 

 ( )    √   and the functions    and    are expanded into power series 

without any free and linear terms in     ̅       . We look for families of 

periodic solutions for (1), which contract to the stationary point       
 ̅   ̅     when the small parameter   tends to zero (see Bruno and 

Soleev (1992)). Then the normal form of the system (1) is as follows  

       ( )     (         ̅   ̅ ) ⁄  

                                    ( )     (         ̅   ̅ )⁄                         (2) 
 

and the corresponding conjugate equations, where  
 

 ( )          

                      (         ̅   ̅ )  ∑      
    

   ̅ 
   ̅ 

  
                    (3) 

with   (            ) and               . 

              

For small |  | |  | and  , all desired families of periodic solutions of 

the system (1) are in the set Á (Soleev (1983)) which is determined from the 

normal form (2) by the system of four equations  

 ( )     (         ̅   ̅ )   ( )     

      ̅( ) ̅   ̅ (         ̅   ̅ )   ̅( )  ̅  (     )                 (4) 
 

where   is a parameter. Eliminating  , we obtain a system of three analytical 

equations in four independent variables 

                
                                         ̅   ̅  ̅   ̅  ̅                                                 (5) 

                           ( ( )   ̅( ))   ̅   ̅       ̅                    
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In a small vicinity near the stationary point        ̅   ̅     
the set of solutions of system (5) have branches. We shall find all these 

branches by means of the method developed in Bruno (1993, 2000). Taking 

into account the first terms of the power series (3), we find the supports of the 

polynomials g, for the system (5):  

 
1 1 1 1

1 1 2 3 4

1 1 1 1
5 6 7 8

( ) ={ = (2,1,1,0), = (1,2,0,1), = (1,2,1,0), = (2,1,0,1),

= (0,3,0,1), = (0,3,1,0), = (3,0,1,0), = (3,0,0,1), };

D g Q Q Q Q

Q Q Q Q
 

 

2 2 2 2
2 1 2 3 4

2 2 2 2
5 6 7 8

( ) ={ = (0,1,0,2), = (0,1,1,2), = (1,0,1,2), = (0,1,2,1),

= (0,1,0,3), = (1,0,0,3), = (1,0,3,0), = (0,1,3,0), };

D g Q Q Q Q

Q Q Q Q
 

 

3 3 3 3
3 1 2 3 4

3 3 3 3
5 6 7 8

( ) ={ = (1,0,0,1), = (2,0,1,1), = (1,1,0,2), = (1,1,1,1),

= (0,,2,0,2), = (0,2,1,1), = (2,0,2,0), = (1,1,2,0), }.

D g Q Q Q Q

Q Q Q Q                

 

For the supports ( )iD g  obtained above, we can compute the corresponding 

Newton polyhedral and normal cones (see Bruno (1993)). The computation 

shows that the system (5) has only one truncation whose normal cone is 

RI , where = ( 1, 1, 1, 1),     (IR ={ IR, 0}).t t   The truncated 

subsystem associated with the cone IR  consists of 

 ̂      
    ̅        

  ̅        
  ̅      

    ̅  

                                                      
  ̅      

  ̅      
  ̅      

  ̅                           (6) 

and its conjugate equation.  
 

Considering the vectors 1 1 2 2
1 7 1 2 7 1= = (1, 1,0,0), = = (0,0,1, 1)T Q Q T Q Q   

and 3 3
3 3 1= = (0,1,0,1)T Q Q , we construct a unimodular matrix (by adding 

on an extra vector 4 = (1,0,0,0)T ).  

 

  (

          
       
       

   
    
    
  

               

)    with univers      (

   
    

  
  

    
    

  
  

). 
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The power transformations corresponding to these matrices are 

 

             

      

      
   

 ̅     ̅ 
   

     ̅  

}                           

      

      
   

 ̅    
    ̅  

 ̅    
    }

 

 
                       (7)  

 

Under the power transformation (7) and the reduction by 1 2u u  in the 

first equation, by 1 2u u  in the second one and by 22u uu  in the third one, the 

system (5) can be converted into 

 

     (      ̅  )    (      ̅  )     

     ̅̅̅̅    ̅̅̅̅                                                                              (8) 

   ( ( )   ̅( ))  (  (      ̅  )       ̅̅̅̅ (      ̅  )        

 

 where  

1 22 1 2 2( , , , , ) = ( , , , ).ju u u u u z z r    

After the reduction by 1
1 2u u z r  in the first equation and by 

1

1 2u u z r


 in the 

second one, the truncated system (6) is translated into 

 

        ̅̅ ̅     
  ̅     +    ̅     

        ̅     
  ̅     

               (9) 

 

and its conjugate equation. From the first equation of system (9) we find  

                       ̅  
          

     
 

                
.                                        (10) 

 

If we substitute  ̅   into the second equation of system (9) we obtain an 

algebraic equation of degree 10 in z . Consequently, system (9) has ten 

complex roots ),( 10 zz , but not for all of them   ̅    ̅   

 

Theorem 1.   

There exists such system (1), that the system (9) has 10 simple roots 00( , )z z , 

i.e. they are 10 real coordinates. 
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Proof.  

Let for system (9) 3 4 5 7= = = = 0.b b b b  Then (10) is  

                                  ̅    
(      

 )

(      
 )
                                             (11) 

Denote  

                                      
      

 

      
                                                   (12) 

Then 

                                       
      

      
                                                 (13) 

and the equation (11) becomes 

                                                        ̅                                                      (14) 

 

From this we see that  

                                                |x|=1                                                 (15) 

for solutions which are interesting for us i.e. =1xx . By squaring both sides 

of (14) we obtain the equation  

 ̅        

According to (13) and (13 ) after the change =1/x x , it turns into  

2 6 2 2 6

8 1 8 1

= ,
b b xb x b

x
b b xb x b




 

which is equivalent to an equation of degree 4. We need solutions that satisfy 

the relations (14) and (15). To make them more explicit, we multiply the 

equation (11) =z xzbyz . Then according to (13) for =1xx  we have  

1 82 2 6 2 6

1 81 8 1 8

) ( )( )
= = = .

( )( )

b b x b b x b b x
zz z x x

b x b b x b b x b

  
  

  
 

Since = 0Imzz  and > 0Rezz , we obtain 

                         Im(      )(   ̅̅ ̅    ̅̅̅)        |x|=1                              (16) 

                     

                    Re(      )(  ̅̅ ̅    ̅̅̅)                                        (17) 

  

The equations (16) are two quadratic equations with respect to Re(x) 

and Im(x) . After the elimination one of them, we obtain equation of degree 4 

such that from its roots we can choose only those that satisfy the inequality 

(17). 
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Now we prove that there exists such system (16), (17) with 4 

solutions. For that in the complex plain we consider the points of intersection 

of the circle | |= 1x  and the hyperbola  

 

8 12 6( )( ) = 0Im b b x b x b  . 

 

Here the points 2 6= /x b b  and 1 8= /x b b  lie in this hyperbola and are used 

for boundary of those its points that satisfy the inequality (17), whereas the 

point  

1 82 6= (( / ) ( / ))/2x b b b b  

 

in the center of the hyperbola. For simplicity, we restrict our self with the 

case 6 8= =1.b b  Then  

1 12 22 2
12( )( ) = ( ) ( )

2 2

b b b b
x b x b x

 
     

and  

1 12 22 2
12( )( ) = [ ( )] [ ( )]

2 2

b b b b
Re x b x b Re x Im x

 
      

2 2
1 12 21/4[ ( )] 1/4[ ( )] .Re b b Im b b     

 

1 12 2
12

1 12 2

( )( ) = ( ) ( )
2 2

1/4 ( ) ( )

b b b b
Im x b x b Re x Im x

Re b b Im b b

 
   

    

On the hyperbola 

12( )( ) = 0Im x b x b   

the inequality 

12( )( ) < 0Re x b x b   
 

 means that the Rex  lies on the interval 

2 1 2 1= ( [ ], [ ]),J min Reb Reb max Reb Reb   

if   (  )    (  )     
 

Further, we restrict ourselves to the case 2 1( ) ( )Re b Re b  and 

2 1( ) = ( ).Im b Im b . Then the first equation in (16) defines two perpendicular 

lines  



Power Geometry for Finding Periodic Solutions in One System of ODE 

 

 Malaysian Journal of Mathematical Sciences 261 

 

                 ( )  
 

 
  (  )    ̅̅̅            ( )  

 

 
  (  )    ̅̅̅                 (18) 

   

The condition (17) is satisfied on the whole first line and in the 

interval J  on the second line. Now we consider the case, when both lines 

(18) intersect the unit circle and both points 2b  and 1b  lie outside it, i.e.,  

2 1 2 2 1| ( ) ( ) |< 2,| ( ) |<1,| |>1,| |>1.Re b Re b Im b b b  

Then the first line intersects the unit circle in two points and the interval J  

intersects it also in two points, i.e. we have 4 solutions of the system (16), 

(17).   
 

According to (13), to each suitable value 0x  there corresponds two 

values 0± .z . Hence we have 8 different solutions 10( , )z z  with 1 0= 0z z   

and  . 
 

In addition the equation (9) has the root 0 = 0z  since 5 = 0b  and the 

root 0 =z   since 7 = 0.b  Evidently 1 0=z z  for them. So the equation (9) has 

10 roots with that property. This finishes the proof of the theorem. 

 

 Now we shall go back, and solve the system (8) with respect to four 

variables , , , .z z r  . For small   and r  solutions of system (8) belong to the 

vicinity of the point 00( , ).z z  We assume that the point 00( , )z z  is the simple 

root of the system (9), i.e. in it the Jacobian 

 

 ( ̂  ̅̂)   (    ̅)   . 

 

Then taking 00= , = , = 0, = 0z z z z r   and applying the Implicit 

Function Theorem we obtain the roots of the system (8) in the form of 

expansions 

 

      {

      ( )                                                       

 ̅    ̅   ( )                                                        

   
 

     
[   (  ̂(        ̅̅̅̅  ))   ( )]  

                       (19) 
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Substituting these expansions into (7) we obtain 

                          

{
 
 

 
      (    ( ))

(  )
 

  ̅̅ ̅    
   (    ̅   ( )) 

  
  ̅̅ ̅     (    ( )) 

    (   ( )) 
  

                                  (20) 

 

where     [  ̂(        ̅̅̅̅  ]    (  )     

 

After substituting (20) into the sum (3), the first equation of system 

(2) implies  

01
00

ln
= ( ( ( ))) ( , , ),

d u
a r M O r z z r

dt
    

 

which yields      
    where 

 

   (  (   ( )))    (     ̅  )             

  

Consequently, from (20) we can obtain a family of periodic solutions 

of the system (2), corresponding to the roots (19) of the system 

 

                                       

{
 
 

 
     

  (    ( ))
(  )

 

  ̅̅ ̅   
   (    ̅   ( )) 

  ̅̅ ̅   
   (    ( )) 

    (   ( )) 

                                  (21) 

 

            As all solutions 00( , )z z  obtained by the Theorem 1 are simple, so for 

corresponding series (20) and families of periodic solutions in form (21). So 

we have proved the following theorem. 

 

Theorem 2.   

There exist systems (1), in which 10 families of real periodic solutions 

bifurcate from the stationary point y=0, when e passes through zero. 
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If 00( , )z z  is not a simple root of the system (9), we substitute  

00= , =z z z z    

 

into the system (8), which produces 

  (     ̅  )    (         ̅    ̅̅ ̅  )     
              (     ̅  )    (         ̅    ̅̅ ̅  )                      (22) 

  (     ̅  )    (         ̅    ̅̅ ̅  )     
 

To this system we apply the toroidal blowing up process used to pass 

from system (5) to system (8). In our case the singularity is concentrated at 

the point = = = 0.r   After the application of the procedure, the point will 

be blown up into a plane, and we must find several roots of a new truncated 

system. Sum of their multiplicities is exactly the multiplicity of the root 

00( , ).z z  So each of new roots is simpler than the initial root. We can iterate 

this process until we obtain a nonsingular system. This way we can determine 

nil the components of the families of periodic solutions of system (2) which 

contract to the singular point (see  Bruno (1999), Bruno and Soleev (1992) 

and Soleev (2005)). 

 

 

3.  CONCLUSION 

Here we shown how works methods Power Geometry for the real 

system of ODEs of order four near a stationary pont, depending on a small 

parameter. The computations and investigations in this paper are based on 

two methods: a method introduced in Bruno (2000) to analyze complicated 

bifurcations and a method presented in Bruno (1993) to compute local 

resolutions of singularities. We have received that there exist systems (1), in 

which ten families of real periodic solutions bifurcate from the stationary 

point, when the parameter tends to zero. In the same manner, one can study 

periodic solutions of the Hamiltonian system with two degrees of freedom 

near a resonant periodic solution. Generally, bifurcations of periodic modes 

in resonant cases from Poiseuille flow, Couette flow and other flows were 

investigated by this way (see Bruno (1993) and Drazin (1992)). 
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